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Expressions for the polarization and the d311 and d333 piezoelectric coefficients of poly(vinylidene fluoride) 
form-I-films are derived. The effect of crystallite orientation is included via the orientation distribution 
function (ODF). In this way the shear piezo effect of the crystal lattice can be taken into account. It has been 
found also that the odd part of the ODF up to l-- 3 is significant. With regard to the lamellar structure of the 
material the crystallites are assumed to be ellipsoidal. 
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INTRODUCTION 

The polarization and piezoelectric coefficients of 
poly(vinylidene fluoride) (PVDF) form-I single crystals 
have been calculated by Purvis and Taylor 1'2 and Tashiro 
et al. 3-5 But in the various applications of PVDF, 
semicrystalline films and not single crystals are used. 
Therefore a composite effect ofcrystallites of certain shape 
dispersed in a non-crystalline (amorphous) matrix must 
be considered. Infinitely this crystallites acting as rigid 
dipoles 6 and spherical, ideally oriented crystallites 4,s have 
been assumed to exist. 

In this paper we attempt to extend the model for 
calculating the experimental measureable d~11 and d~33 
coefficients proposed in ref. 4. Instead of using the 
assumption of spherical crystallites we will assume that 
they have an ellipsoidal shape, which allows conside- 
ration of the lamellar morphology 6. The orientation state 
of the crystalline phase is described using the ODF v's. The 
first determination of this function from diffraction ex- 
periments (pole figure measurements) for biaxially orien- 
ted polyethylene (i.e. the general case) was done by 
Krigbaum et al. 9 We have tried to link this function with 
measurable physical properties. With the help of group 
theory it is shown that only a few of the ODF components 
are significant. It should be noticed, however, that these 
components (except one) cannot be obtained from re- 
duced pole figures due to 'ghost effects '~°. These effects 
reflect a loss of information on the ODF in the common 
pole figures due to the symmetry of the diffraction 
experiment. The X-rays (or neutrons) cannot distinguish 
between both sides (top or bottom) of a set of reflecting 
lattice planes (Friedel's law). The consequences of this fact 
for the reproduction of ODFs from pole figures are 
discussed in detail in ref. 7. 

POLARIZATION 

Proceeding from a two-phase model of PVDF form-I 
crystallites embedded in an amorphous nonpiezoelectric 

PVDF matrix, the spontaneous polarization of a suitably 
oriented film (thickness l, area A) is caused by the 
permanent electric dipole moment of the crystal lattice in 
the fi-direction. Throughout this paper we will use a 
crystallite and a sample co-ordinate system K~ and K A so 
that XBI~b, YBrlfi, z.ll ; and XAII stress direction, YAII 
transverse direction, ZA]I film normal, respectively. All 
quantities in K A are marked with a tilde. 

If the crystallites are assumed to have an ellipsoidal 
shape (lamellar structure6), then according to the well 
known electrodynamic relationship ~ we find that 

P3 = ~3~a/[-~:a "+ ?'/3( ~3 -- ~:a)] 

Here ~ is the lattice polarization, P3 is the lattice 
polarization modified by the surrounding amorphous 
material with dielectric constant e,. e,~ and n3 are the third 
principal axes components of the dielectric and de- 
polarization tensor ~1, respectively. If we have N 
noninteracting equal ellipsoid crystallites, each of volume 

and polarization P,. (v = 1 . . . . .  N) the averaged sample 
polarization is given by 

P =  A1 ,~,P"' IP'I=P3 (I) 

Now we take into account the crystallite orientation with 
the help of the ODF f(g) s. The sum in equation (1) 
becomes a weighted integral over the whole orientation 
space G 

P = ~ T J P ( g ) f ( g )  dg 

O 

(2) 

The factor in front of the integral is simply the crystallinity 
~b. From a mathematical point of viewf(g) is a quadratic 
integrable function on the three-dimensional rotation 
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group SO(3), f(q)eL2(SO(3)). Thus it can be expressed by a 
complete and orthogonal system of basis functions. Such a 
system consists, e.g., of the matrix elements of the 
irreducible unitary SO(3) representations D~,(9) (/=0, 
1 . . . .  ; m, n = - l, - l + 1,. . . , /) taken in the canonical bases 

(see for example ref. 12). So we have/° era 

f(9) = y '  , , , , ,  -1 C, D,..(g ) (3) 
1 = 0 ( 1 ) m , n  =-1 

and D~.(O) fulfil the orthogonality relations 

r ~ 1 
D,.*.,(g)D,..(g)dg = 2.-~3wfr,,m,3,,., 

G 

(4) 

The rotation group can be parameterized by the three 
Eulerian angles, ct, fl, y usually applied in quantum 
mechanics la. Then Do~o(~,fl,y)=cosfl holds with D~(g) 
=D~.,.(g-~), (3), (4) and Pa(g)=(cosfl)P3 we finally get 
from (2) 

p 3  = /~a 1 oo 
~a + n3(ec 3 -- /3a)  '~3~C1 (5) 

PIEZOELECTRIC COEFFICIENTS 

Next we consider the piezoelectric strain coefficient d~11 
('s' indicates 'sample')'* 

~, I [ OQ~'~ 1 c3AP a 
a311 = A~,d--~-~-)== o = ~  05, 1 (6) 

Qo is the charge on the covering electrodes and ?r~ 1 is the 
pure axial stress in X~ direction. The latter equality holds 
for vanishing electric field in the sample, i.e. for short 
circuited electrodes. 

Also n u is the tensor whose principal axes components 
are e,/(e~ + n~(g¢-q)) and T u the matrix transforming Ka 
into K,. This means we can consider the rotations as a 
three-dimensional matrix group, which is itself an ortho- 
gonal SO(3) representation T with matrix elements To(g ) 
= T~(g- 1). Then from equation (2) we get 

P3 = dp f Tai(g- X)n,kPCk(g)f(g)d 0 (7) 

G 

and ~ can further be expressed as 

where the crystal piezoelectric strain coefficients dk~.,* 
have been used. Now also the first and second com- 
ponents of ~ are non-zero because the stress deforms the 
crystal lattice and produces an intrinsic piezo effect. With 
the assumption of a uniform distribution of stress between 
the crystalline and amorphous regions (mechanical series 
(Reuss) model) ~* we find 

The derivative of ~(g)  yields 

bat =const.  (8) 

88~ 1 
-- dklmTtl(g)Tral(g) (9) 

and d~l in equation (6) is found to be (/33 from equation 
(5)): 

~311=/53/~, 1 dl  i tgt) 
I t95~1~ 4 f~ 07#1 t 

n 3 g c  3 ( 1  d8 a 1 & 3 ~'~ 

4 
3 /3 t' d/~(g),~ 

+ , ~  . ~-, ,/T3,(g -1 ~ - - - ,  Jtg~g'" 
i = 1/~a "¢-/li~gc - -  ~aJ, J (70"11 

G (10) 

In the same way a quite similar equation for ~a33 can be 
derived. We should remark that the equations (5) and (10) 
in case of spherical crystallite shape and r iO)=3(0 -e )  
(where 6 is the delta-distribution and e is the identical 
transformation) are reduced to the relationships given in 
ref. 14. Completely new terms appear in the sum of 
equation (10) for i=  1 and 2. These contributions involve 
the shear piezo effect caused by ~ r  According to 
equation (8) contributions from other a u components are 
neglected. The term with /~a comes from the different 
properties of the amorphous and crystalline phases and 
indicates the clmnge of dipole moment per unit volume 
through composite effects contrary to the sum, which 
expresses the intrinsic (lattice) effect. 

EVALUATION OF THE SIGNIFICANT O D F  
C O M P O N E N T S  

Not  all coefficients in the series expansion (equation (3)) 
are relevant for the piezoelectric 311 and 333 effects 
analagously to the case of polarization. 

We consider the crystal contribution d~a(~lin equation 
(10), written in general co-ordinate system (compare with 
equation (7)) for recognizing the transformation proper- 
ties of the integrant 

t~;~)l m i n i  T 3 i ( g - l ) n i h ~  f ( g ) d g  

G 

= dpf T 3 i(g - a )nihdhjk Tj l (g )  T~ z(g)f(g)dg 

G 

G 

where equations (9) and (3) have been used. Introducing 
the third-rank tensor AUk = n~hdh~k the integrant becomes 

I~T ~ g~- lXT ~ [ ~ -  1~ A CmnD l [~- 1~ T3i(g- ~ l j~  I tkw i Uk ~ m w  J 

In order to exploit equation (4) we have to find the 
irreducible parts of the tensor product representation 
T ® T ® T a c t i n g  on the third-rank tensors ItA. If we deal 
with a product of unitary irreducible SO(3) represen- 
tations D l this problem would be solved by the well known 
(real) Clebsch-Gordan coefficients (lll2mlm211m) 12 

l l~ l 2 era= ~ (Itl2mlm2[lm)em,@em2 
m t + ra2 = ra 
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From dim T = d i m D  1 (=3), d imDt#3  for Iv~ 1 and the 
fact that both representations are irreducible, they must 
be equivalent: 

T = V - X D 1 V  

In the bases e~ and ei (orthonormal cartesian basis in R 3) 
V becomes 

Matthies v'x° we deal with a type III crystal class. The 
crystal symmetry of the true ODF is GB = C2: 

Tn~,J(g)=flhig)=flg); hi, C2; i= 1,2 (14) 

The rotational part G A of the sample symmetry of a 
piezoelectric (poled) film is also C 2 with the axis normal to 
the film: 

0 0 (ll)  

1 i 

The tensor product definition yields 

( T® T® T)A =((V- 1D1 V)(~(V- 1D1 V)®(V-  1D~ V))A 

=((V- l@ V-  1® V-  IXDI@ DI@ DI ) 

x (V® V® V))A 

with the common Clebsch-Gordan problem 

DI® Dt® D t = D ° ~ 3 D  1 (~ 2D2 (~D 3 

With the unitarity condition 

Z( l, 12m,m2llmXlt 12ml mzll' m')= ~,l,(~mm, 
ral 

the following explicit formula can be derived 

(T® T ® T)A = ~ {rst ;Iron :ijk} Ao~Dt, rae~ ®e~ ®6, 
l , m , n  

{rst;lmn;ijk}: = ~ ( r a ~ i V m 2 j V r a 3 k V r n ~  1 Vs% 1 Vt~ 1) (12) 

(11 m2mall'm23X1 I' mlm231lm)( l l n2n311' n23)(1 l' n~n2311n)) 

Here the sum must be taken according to the relations 

r=ll- 1 I, [ l -11+ 1 . . . . .  min(2,l + 1);% +m23 =m;m2+m 3 
=m23; m i = - l , 0 , 1 ;  analogically for n~. Some sym- 
metries of the Clebsch-Gordan coefficients ~2 and 
equation (11) yield 

ThR flo)= f(oh,)= f(g); h~C2; i= 1,2 (15) 

Here we introduce the left and right regular repre- 
sentations T L and T R of C216, respectively. With the help 
of the linear independence of the D~k(g) from equations 
(14) and (3) we get for any l and n 

)~Ct Orak(9 )-~'.Cz Dm.(g ') ~.D~.(hi- ' ra. 1 - 1  - -  ran l - 

k ra ra 

= Z6k,ZC~,,,D~,(g- 1) 
k m 

That means we look for such linear combinations of basis 
elements D~k(O-1) on which Th L acts as the trivial repre- 
sentation 6k.. These can easily be obtained with the 
projection operator formalism12 and D~.(e) = t ¢~mn, Dmn(C2) 
= ( -  1)mfm.. One finds a selection rule for the index m: m 
=0, _+2, _+4 . . . .  The complete decompositions of the 
regular representations of all point groups up to l = 8 are 
tabulated in ref. 17. In the present case the relations (14) 
and (15) obviously do not give a further elimination of 
ODF components. 

PIEZOELECTRIC COEFFICIENTS (SUM FORM) 

Now the orthogonality relations~(4) can be used to 
simplify the crystal contribution ~ in equation (10). 
With equations (10), (9) and (3) we have (principal axes) 

3 ~a f 
G 

van l - 1 x C l Dra,( 0 )do 

and with equation (12) 

{rst; 1-  mn; ijk} = ( - 1) 1 +l+ i, +j, + k, {rst; lmn; ijk} 
{rst; l m -  n; Ok} = ( - 1) 1 +~ +rl +s, +r. {rst; Iron; (ik} (13) 

~1 f o r i = l  
il = ( 0  for i=2,3 etc. 

CRYSTAL AND SAMPLE SYMMETRIES 

Due to the present choice of axes, the PVDF form-I space 
group reads Amm2 and its point group mm2. Therefore, 
only those tensor components are not zero that belong to 
the subspace transforming according to the trivial repre- 
sentation of the point group. For mm2 and with Ai'k = Aikj 
these components are Al13, a a a a ~ 15 - z~t223~ "-1311~ za322~, "-'--333 • 

Tables I and 2 show the results from the evaulation of 
equation (12). All other coefficients except those gained 
from equation (13) are zero. The point group also affects 
the series expansion (equation (3)). In the notation of 

3 
~ ~a 

d~3~'=4~ ea+ni(e~_e, ) ~ {311;l'm'n';ijk}d,ikC~'" 
l , ra ,n  

l ' , r a ' , n '  

x fDZ.',ra,(g - ')D~.(g)dg 
G 

The relation (4) and D~,(g)=(-1)ra-"D~ra_,,(g) yield 

3 

x ~ {311 ; l -n-m;•k}d, jk  ( -  1)"-"C7'" 
.... 21 + 1 (16)  

analogically for ~c~3. The sum (equation (16)) is finite and 
must be taken according to Table I and equation (13). The 
C~' (l ~< 3) contain the features of the texture, important 
for the piezo effect. But at the moment there is no 
common simple experiment to determine the coefficients 
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Table 1 Nonvanishing {311; Iron; ijk} 

i j k  1 1 3  2 2 3  3 1 1  3 2 2  3 3 3  
Iron 
1 0 0 - 1 / 1 0  - 1/10 2/5 2/5 1/5 
2 2 2 - 1/12 1/12 1/6 - 1/6 0 
3 0 0 1 / 1 0  1 / 1 0  11/10 1 / 1 0  - 1/5 
3 0 2 -- ,,/30_/60 -- x/3QO/60 - x/33QO/60 - x/300/60 + x/30/30 
3 2 0 - ,,/30/60 ,,/30/60 - x/30/60 ,,/30/60 0 
3 2 2 1/12 -1 /12  1/12 -1 /12  0 

T a b l e  2 Nonvanishing 1333; Iron; ijk} 

i j k  1 13 2 2 3  31 1 3 2 2  3 3 3  

Iron 
1 0 0 1/5 1/5 1/5 1/5 3/5 
3 0 0 -1/5 =!1/5 - 1/5 721/5 2/5 
3 2 0 x/30/30 - x/30/30 + x f~ /30  - ,,/30/30 0 

with odd values of 1. This represents a still open problem 
of the whole quantitative texture analysis, which also 
occurs in metal physics. The C~'" with even l can be 
obtained by the classical Bunge-Roe method 8'9. 

CONCLUSIONS 

Polarization and piezoelectric coefficients are examples 
physical properties depending on the odd part of the 
ODF T'l°. Therefore we are confronted with ghost effects, 
namely with special, uncorrectable ghosts. That means 
that with common pole figure experiments only an ODF 
of higher crystal symmetry (D2) can be reproduced. 
Taking into account anomalous scattering, unreduced 
pole figures can be obtained in principle. But as there are 
only light atoms in the unit cell the effect seems not large 
enough to be experimentally utilized. For instance the 
Bijvoet-ratio 18 of the (1 10) reflection and CrK~ radiation 
is only about 3~o. 

The calculations of'Evaluation of the significant ODF 
components' are applicable to tensors of any rank and, 
therefore, can also be applied to dielectrical (second-rank) 
and mechanical (fourth-rank) properties. It must be 
clarified in each case if the even part of the ODF is 
sufficient to describe the property considered. 

With the assumption of ellipsoidal crystallites in 'Pola- 
rization' further information about lamellae dimensions 
can be utilized in the model by an appropriate principal 
axes ratio. 
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